
Chapter 9

LONGITUDINAL

COUPLED-BUNCH

INSTABILITIES

When the wake does not decay within the bunch spacing, bunches talk to each

other. Assuming M bunches of equal intensity equally spaced in the accelerator ring,

there are � = 0; 1; � � � ; M�1 modes of oscillations in which the center-of-mass of

a bunch leads� its predecessor by the phase 2��=M . In addition, an individual bunch

in the �th coupled-bunch mode can oscillate in the synchrotron phase space about its

center-of-mass in the mth azimuthal mode with 2m = 2; 4; � � � azimuthal nodesy in
the perturbed longitudinal phase-space distribution. Of course, there will be in addition

radial modes of oscillation in the perturbed distribution. The long-range wake can drive

the coupled bunches to instability.

9.1 Sacherer's Integral Equation

Because the beam particles execute synchrotron oscillations, it is more convenient to

use circular coordinates r; � in the longitudinal phase space instead of the former time

�We can also formulate the problem by having the bunch lag its predecessor by the phase 2��0=M

in the �0th coupling mode. Then mode �0 will be exactly the same as modeM�� discussed in the text.
yFor example, the dipole mode m = 1 can be written as � cos�, which has two nodes � = ��=2.
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advance � and energy o�set �E. We de�ne8<
:

x = r cos� = � ;

px= r sin� =
�

!s�2
�E

E0
;

(9.1)

so that the equations of motion8>><
>>:

dx

ds
=�!s

v
px ;

dpx
ds

=
!s
v
x +

�

E0!s�2
hF k

0 (� ; s)i ;
(9.2)

become more symmetric. In the absence of the wake force hF k
0 (� ; s)i, the trajectory of a

beam particle is just a circle in the longitudinal phase space. In above, !s is the angular

small-amplitude synchrotron frequency, � the slip factor, and v = �c is the velocity and

E0 the energy of the synchronous particle. The phase-space distribution  of a bunch

can be separated into the unperturbed or stationary part  0 and the perturbed part  1:

 (�;�E; s) =  0(�;�E) +  1(�;�E; s) : (9.3)

The linearized Vlasov equation becomes

@ 1
@s

� !s
v
px
@ 1
@x

+
!s
v
x
@ 1
@px

+
@ 0
@px

�

E0!s�2
hF k

0 (� ; s)i = 0 : (9.4)

Changing to the circular coordinates, the equation simpli�es to

@ 1
@s

+
!s
v

@ 1
@�

+
�

E0!s�2
d 0
dr

sin�hF k
0 (� ; s)i = 0 : (9.5)

The perturbed distribution can be expanded azimuthally,

 1(r; �; s) =
X
m

�mRm(r)e
im��i
s=v ; (9.6)

where Rm(r) are functions corresponding to themth azimuthal, �m are the expansion co-

eÆcients, and 
=(2�) is the collective frequency to be determined. The Vlasov equation

becomes

(
�m!s)�mRm(r)e
�i
s=v = � iv�

E0!s�2
d 0
dr

Z �

��

d�

2�
e�im� sin� hF k

0 (� ; s)i : (9.7)
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Now consider the wake force acting on a beam particle at location s, where a cavity

gap is located for example, with time advance � relative to the synchronous particle

due to all preceding particles passing through s at an earlier time. This force can be

expressed as

hF k
0 (� ; s)i = �

e2

C

1X
k=�1

Z 1

�1

d� 0�1[�
0; s� kC � v(� 0��)]W 0

0[kC + v(� 0��)] ; (9.8)

where only the perturbed density �1, which is the projection of  1 onto the � axis, is

included, because the unperturbed part should have been considered in the zeroth order

of the Vlasov equation during the discussion of potential-well distortion. The summation

over k takes care of the contribution of the wake left by the charge distribution in previous

turns. The lower limit of the summation and the lower limit of the integral have been

extended to �1 because of the causality property of the wake function. The expression

in Eq. (9.8) is more accurate than the on in Eq. (2.7). In the latter, we assume the

particle density does not change from the time the source particles pass the reference

point to the time when the test particle observes the wake at the same reference point.

Such an assumption is no longer valid here because the wake is left by particles in other

bunches which may be many revolution turns ahead and these bunches are oscillating

azimuthally in the longitudinal phase space. When the source particle, with time advance

� 0 with reference to the synchronous particle and k turns ahead of the test particle, is at

location s to excite the cavity, the test particle is at location s� kC � v(� 0��). Hence,
we have the second argument in the perturbation linear density �1.

There are M bunches and the synchronous particle in the `th bunch is at location

s`. If the witness particle is in the nth bunch,

hF k
0n(� ; s)i = �

e2

C

1X
k=�1

M�1X
`=0

Z 1

�1

d� 0�

� �`
�
� 0; s� kC � (s`�sn)� v(� 0��)�W 0

0

�
kC + (s`�sn) + v(� 0��)� : (9.9)

We assume the bunches are identical and equally spaced. For the �th coupled mode, we

substitute in the above expression the perturbed density of the nth bunch �1n(�)e
�i
s=v

including the phase lead,

�`(� ; s) = �1n(�)e
i2��(`�n)=Me�i
s=v : (9.10)

Next, let us go to the frequency domain using the Fourier transforms

W 0
0(v�) =

1

2�

Z 1

�1

d! Z
k
0(!)e

�i!� ; (9.11)
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�1n(�) =

Z 1

�1

d! ~�1n(!)e
i!� : (9.12)

In Eq. (9.9) above, we shall neglectz the time delay � 0�� in �` because this will only

amount to a phase delay 
(� 0��) where 
 � m!s, which is very much less than the

phase change !r(�
0��) during the bunch passage, where !r=(2�) is the frequency of

the driving resonant impedance. Substituting Eqs. (9.11) and (9.12) into Eq. (9.9) and

integrating over � 0 and one of the !'s, the wake force for the �th coupled-bunch mode

becomes

hF k
0n�(� ; s)i = �

e2

C

1X
k=�1

M�1X
`=0

ei2��(`�n)=Mei
(�s+kC+s`�sn)=v�

�
Z 1

�1

d!~�1n(!)Z
k
0(!)e

�i!(kC+s`�sn)=vei!� : (9.13)

The summation over k can now be performed using Poisson formula

X
k

e�ik!C=v =
X
p

2� Æ

�
!C

v
� 2�p

�
=
X
p

!0 Æ(! � p!0) : (9.14)

This leads to

hF k
0n�(� ; s)i = �e

2

C

1X
p=�1

M�1X
`=0

ei2��(`�n)=Me�i
s=v+i!p�!0~�1n(!p)Z
k
0(!p)e

�ip!0(s`�sn)=v ;

(9.15)

where we have used the short-hand notation

!p = p!0 + 
 : (9.16)

We next make use of the fact that the unperturbed bunches are equally spaced, or

s` � sn =
`� n

M
C : (9.17)

The summation over ` can be performed. The sum vanishes unless (p��)=M = q, where

q is an integer:
M�1X
`=0

ei2�(`�n)(��p)=M =

8<
: M if

p� �

M
= q ;

0 otherwise :
(9.18)

zWithout this approximation, only Z
k
0 will have the argument !p in Eq. (9.15). The argument of

~� and the factor in front of � in the exponent will be replaced by !p�
. In Eq. (9.19) below, The

argument of ~� and the factor in front of � in the exponent will be replaced by !q�
.
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The �nal result is

hF k
0n�(� ; s)i = �

e2M!0
C

e�i
s=v
1X

q=�1

~�1n(!q)Z
k
0 (!q)e

i!q� ; (9.19)

where

!q = (qM+�)!0 + 
 : (9.20)

Since the left side of the Vlasov equation is expressed in terms of the radial function

Rm(r), we want to do the same for the wake force. First, rewrite the perturbed density

in the time domain,

hF k
0n�(� ; s)i = �e

2M!0
C

e�i
s=v
1X

q=�1

Z
k
0(!q)

Z
d� 0

2�
�1n(�

0)ei!q(���
0) : (9.21)

Since �1n(�
0) is the projection of the perturbed distribution onto the � 0 axis, we must

have

�1n(�
0)d� 0 =

Z
 1n(�

0;�E 0)d� 0d�E 0 (9.22)

=
E0!s�

2

�

Z
 1n(r

0; �0)r0dr0d�0 (9.23)

=
E0!s�

2

�

X
m0

�m0

Z
Rm0(r0)eim

0�0r0dr0d�0 : (9.24)

The wake force then takes the form

hF k
0n(� ; s)i=�

e2!0M

2�C

E0!s�
2

�
e�i
s=v

1X
q=�1

X
m0

Z
k
0 (!q)

Z
r0dr0d�0�m0Rm0(r0)eim

0�0ei!q(���
0) ;

(9.25)

This wake force is next substituted into the Vlasov equation (9.7). The integrations

over � and �0 are performed in terms of Bessel function of order m using its integral

de�nition

imJm(z) =
1

2�

Z �

��

d� e�im�+iz cos� ; (9.26)

the recurrence relation

Jm�1(z) + Jm+1(z) =
2m

z
Jm(z) ; (9.27)

and the fact that

Jm(�z) = (�1)mJm(z) : (9.28)
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The result is the Sacherer's integral equation for longitudinal instability for the mth

azimuthal �th coupled-bunch mode,

(
�m!s)�mRm(r) =

� i2�e
2MN�

�2E0T 2
0!s

m

r

dg0
dr

X
m0

im�m0

�m0

Z
r0dr0Rm0(r0)

X
q

Z
k
0 (!q)

!q
Jm0(!qr

0)Jm(!qr) ; (9.29)

where transformation of the unperturbed longitudinal distribution

 0(r)d�d�E =
!s�

2E0

�
 0dxdpx = Ng0(r)rdrd� (9.30)

has been made so that g0 is normalized to unity when integrated over rdrd�.

This is an eigenfunction-eigenvalue problem, the �m's being the eigenfunctions and


 the corresponding eigenvalue. The solution is nontrivial. However, with some approx-

imations, interesting results can be deduced. When the perturbation is not too strong

so that the shift in frequency is much less than the synchrotron frequency, there will not

be coupling between di�erent azimuthals. The integral equation simpli�es to

(
�m!s)Rm(r) = � i2�e
2MN�

�2E0T 2
0!s

m

r

dg0
dr

Z
r0dr0Rm(r

0)
X
q

Z
k
0(!q)

!q
Jm(!qr

0)Jm(!qr) :

(9.31)

The spread in synchrotron frequency can be introduced by letting !s be a function of

r. Moving the factor 
 � m!s(r) to the right side, the radial distribution Rm can be

eliminated by multiplying both sides by rJm(r) and integrating over dr. We then arrive

at the dispersion relation,

1 = � i2�e
2MNm�

�2E0T 2
0!s

X
q

Z
k
0(!q)

!q

Z
dr
dg0
dr

J2m(!qr)


�m!s(r)
: (9.32)

Stability and growth contours can be derived from the dispersion relation of Eq. (9.32)

in just the same way as in the discussion of microwave instability for a single bunch in

Chapter 6.

9.1.1 Synchrotron Tune Shift

When the spread in synchrotron frequency is small, Eq. (9.32) gives the frequency shift


�m!s =
i2�e2MNm�

�2E0T 2
0 !s

X
q

Z
k
0 (!q)

!q

�
�
Z
dr
dg0
dr

J2m(!qr)

�
; (9.33)
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where the expression inside the square brackets, denote by F , can be viewed as a dis-

tribution dependent form factor, which is positive de�nite because dg0=dr is negative.

The real part Re(
�!s) gives the coherent tune shift of the bunch while the imaginary

part Im
 gives the growth rate of the instability.

When the bunch length 2�̂ is much shorter than the wavelength of the perturbing

impedance, or !q�̂ � 1, the Bessel function can be substituted by its small-argument

expression:

Jm(x) � 1

m!

�x
2

�m
: (9.34)

We are interested in particular the synchrotron tune shift of one bunch (M = 1) in

dipole mode (m = 1), and obtain

�
 = � e2N�

2�2E0T 2
0!s

X
q

!q ImZ
k
0 (!q) ; (9.35)

where !q = q!0 + !s and the bunch density normalization

Z
g0(r)rdrd� = 1 (9.36)

has been used. In the situation that the perturbing impedance is a broadband resonance,

we can make the approximation !q = q!0.

It is important to point out that Eq. (9.35) is only the dynamic part of the syn-

chrotron tune shift contributed by the impedance. There is another contribution coming

from the static potential-well distortion. This term is not present in Eq. (9.35), because

during the derivation of the Sacherer's growth formula, we have substituted only the

perturbed distribution into the wake force in Eq. (9.8) but not the unperturbed distri-

bution. As a result, the static potential-well distortion piece has been left out. This

static contribution has been addressed in Eq. (3.50). When the short bunch approxi-

mation is made, it can be shown that the static contribution just cancels the dynamic

contribution, resulting in no coherent shift for the dipole mode (Exercise 9.2). This

is evident physically because the dipole motion is rigid. The whole bunch moves as

a whole, and therefore the bunch center does not experience any change in wake �eld

from itself at all. On the other hand, an individual particle moving inside a bunch will

experience the time variation of the wake left by the bunch and therefore the incoherent

tune shift is nonzero.
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9.1.2 Water Bag Model

Take the simple case of a single bunch of length 2�̂ and uniform distribution in the

longitudinal phase space, which is usually called the water bag model. Then

g0(r) =
1

��̂ 2
H(�̂ � r) ; (9.37)

where the Heaviside function is de�ned as H(x) = 1 when x > 0 and zero otherwise.

The form factor, the expression inside the square brackets of Eq. (9.33), becomes

F =
1

��̂ 2
J2m(!q�̂ ) �

!2
q

4�

1

(m!)2

�
!q�̂

2

�2m�2

; (9.38)

where the assumption of a short bunch has been made in the last step. The growth rate

driven by the impedance can now be written as

1

�m
=

e2N�

2�2E0T 2
0!s

m

(m!)2

X
q

�
!q�̂

2

�2m�2

!qRe Zk
0 (!q) ; (9.39)

where, for one bunch, !q = q!0 + 
.

9.1.3 Robinson's Instability

The m = 0 mode is a trivial mode which gives 
0 = 0. It describes the potential-

well distortion mode addressed in Chapter 3 and is of not much interest here where

the emphasis is on instabilities. The next azimuthal mode is m = 1 which describes

dipole oscillations and we expect 
1 � !s. Consider the situation of having the driving

impedance as a resonance so narrow that there is only one q > 0 that satis�es

!r � q!0 � !s ; (9.40)

where !r=(2�) is the resonant frequency. The growth rate for a short bunch can therefore

be obtained from Eq. (9.39),

1

�1
= Im�!s =

�e2N!r
2�2E0T 2

0!s
[Re Zk

0(q!0+!s)�Re Zk
0(q!0�!s)] ; (9.41)

where the �rst term corresponds to positive frequency and the second negative frequency.

If the resonant frequency is slightly above q!0 as illustrated in Fig. 9.1(a), we have
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Figure 9.1: (a) Above transition, if the resonant frequency !r is slightly above a

revolution harmonic q!0, ReZ
k
0 at the upper synchrotron sideband is larger than at

the lower synchrotron sideband. The system is unstable. (b) Above transition, if

!r is slightly below a harmonic line, ReZ
k
0 at the upper sideband is smaller than at

the lower sideband. The system is stable.

Re Zk
0(q!0 + !s) > Re Zk

0(q!0 � !s). Above transition, the growth rate will be positive

or there is instability. On the other hand, if !r < q!0 as illustrated in Fig. 9.1(b), the

growth rate is negative and the system is damped. This instability criterion was �rst

analyzed by Robinson [1], and we have obtained exactly the same result in Sec. 8.3.3

using phasor diagram analysis. Below transition, the inverse is true; one should tune the

resonant frequency of the cavity below a revolution harmonic for stability. Note that the

growth rate of Eq. (9.41) is independent of the bunch length when the bunch is short,

implying that for the dipole mode, this is a point-bunch theory.x Thus, this special case

should be obtainable much more easily than the complicated derivation that we have

gone through, and it is worthwhile to make a digression into this easier derivation.

9.1.3.1 Point-Bunch Theory

Let us start from the equations of motion of a super particle with arrival time advance

�(s), carrying charge eN , and seeing its own wake left behind k revolutions before. We

xMore about Robinson's stability criterion was discussed in Chapter 7.5.
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have
d2�

ds2
+
!2
s

v2
� =

e2N�

v�2E0C

1X
k=�1

W 0
0 [kT0 + �(s� kC)� �(s)] ; (9.42)

where the summation has been extended to �1 (the future) because the wake function

obeys causality. The arrival time advance of each passage through the cavity gap is

of the order of the synchrotron oscillation amplitude, which should be small. We can

therefore expand the wake potential about kT0. The right side becomes

R:S: =
e2N�

v�2E0C

1X
k=�1

[�(s� kC)� �(s)]W 00
0 (kT0)

=
e2N�

v�2E0C
�(s)

1X
k=�1

�
e�i
(s=v�kT0) � 1

�
W 00

0 (kT0) ;

(9.43)

where we have substituted the collective time behavior

�(s) / e�i
s=v ; (9.44)

with 
 being the collective angular frequency to be determined. Next go to the frequency

domain by introducing the longitudinal impedance Z
k
0 , or

W 0
0(t) =

1

2�

Z
d!Z

k
0(!)e

�i!t : (9.45)

We obtain

R:S: = � ie2N�

v�2E0C

1X
k=�1

�
e�i
(s=v�kT0) � 1

� Z d!

2�
!Z

k
0(!)e

�i!kT0 : (9.46)

The summation over k can now be performed. Substituting the time behavior of � into

the left side, the equation of motion becomes


2 � !2
s =

ie2N�v2

�2E0C2

1X
p=�1

h
(p!0 + 
)Zk

0(p!0 + 
)� p!0Z
k
0(p!0)

i
: (9.47)

Finally, assuming that the perturbation is small, the result simpli�es to

�
 =
ie2N�

2�2E0T 2
0!s

1X
p=�1

h
(p!0 + !s)Z

k
0 (p!0 + !s)� p!0Z

k
0 (p!0)

i
: (9.48)

The above shift in synchrotron frequency gives exactly the same growth rate as Eq. (9.41)

when the driving impedance is a narrow resonance. The only di�erence is the second
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term in Eq. (9.48). This term receives contribution from the imaginary part of the

impedance only and describes the tune shift due to potential-well distortion. The origin

of this term is very similar to the derivation of Eqs. (3.50) and (3.51). The only thing

additional here is the inclusion of the wake e�ect from preceding bunch passages. Here,

the wake �eld from preceding bunch passages does not move with the bunch as a whole,

and therefore contributes a viewable coherent tune shift. This term should also appear in

the Sacherer's growth formula. It has been left out because, during the derivation, only

the perturbed distribution but not the unperturbed distribution have been substituted

into the wake force in Eq. (9.8).

Now let us come back to Eq. (9.41). For M equal bunches, the equation becomes,

for coupled-bunch mode �,

1

�1�
=

�e2NM!r
2�2E0T 2

0!s

�
Re Zk

0(qM!0+�!0+!s)�Re Zk
0(q

0M!0��!0�!s)
�
: (9.49)

When � = 0, both terms will contribute with q0 = q and we have exactly the same

Robinson's stability or instability as in the single bunch situation. This is illustrated in

Fig. 9.2. When � = M=2 if M is even, both terms will contribute with q0 = q, and the

same Robinson's stability or instability will apply. For the other M�2 modes, only one

term will be at or close to the resonant frequency and only one term will contribute. If

the positive-frequency term contributes, we have instability. If the negative-frequency

term contributes, we have damping instead. If one choose to speak in the language

of only positive frequencies, there will be an upper and a lower synchrotron sideband

surrounding each revolution harmonic. Above transition, the coupled-bunch system will

be unstable if the driving resonance leans towards the upper sideband and stable if it

leans towards the lower sideband.

For the higher azimuthal modes (m > 1) driven by a narrow resonance, we have the

same Robinson's instability. The growth rates are

1

�m�
=
�e2NM!r
2�2E0T 2

0!s

m

(m!)2

�
!r�̂

2

�2m�2

�

�
�
Re Zk

0(qM!0+�!0+m!s)�Re Zk
0(q

0M!0��!0�m!s)
�
; (9.50)

which depend on the bunch length as �̂ 2m�2. As a result, higher azimuthal instabilities

for short bunches will be much more diÆcult to excite. For long bunches, we need to

evaluate the form factor F . An example will be discussed in Sec. 9.2.
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Figure 9.2: Top plot shows the synchrotron lines for both positive and negative

revolution harmonics for the situation of M = 6 identical equally-spaced bunches.

The coupled-bunch modes � = 0, 1, 2, 3, 4, 5 are listed at the top of the synchrotron

lines. Lower plot shows the negative-harmonic side folded onto the positive-harmonic

side. We see upper and lower sidebands for each harmonic line.

Landau damping can come from the spread of the synchrotron frequency. The

spread due to the nonlinear sinusoidal rf wave form can be written as (Exercise 9.4)

�!s
!s

=

�
�2

16

��
1 + sin2 �s
1� sin2 �s

�
(h�Lf0)

2 ; (9.51)

where �L is the total length of the bunch and �s is the synchronous angle, and is valid

for small amplitudes. The mode will be stable if [2]

1

�
.

p
m

4
�!s : (9.52)

When the synchronous angle �s 6= 0, the computation of synchrotron frequency spread is

tedious. A numerical calculation is shown in Fig. 9.3 for various � = sin�s. The expres-

sion in Eq. (9.51) comes from a �tting to the numerical calculation at small amplitudes.

9.2 Time Domain

The longitudinal coupled-bunch instabilities can also be studied without going into the

frequency domain. We are employing the same Vlasov equation in Eq. (9.7), but using
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Figure 9.3: Synchrotron frequency spread S as a function of single-bucket bunch-

ing factor B � �Lf0 for various values of � = sin�s. �L is full bunch length, f0
is revolution frequency, �s is synchronous angle, and !s0 is unperturbed angular

synchrotron frequency.

the wake function of a resonance in the time domain. This derivation was �rst given by

Sacherer [2].

The wake function for a resonance with resonant frequency !r=(2�), shunt impe-

dance Rs and quality factor Q was given in Eq. (1.46). For a narrow resonance with

� = !r=(2Q)� !r, we can neglect the sine term{ and simplify the wake function to

W 0
0(z) =

!rRs

Q
e��z=v cos

!rz

v
when z > 0 : (9.53)

The wake force is then given by

hF k
0 (� ; s)i = �e

2!rRs

QC

Z 1

�

d� 0 e��(�
0��) cos[!r(�

0��)] � [� 0; s� v(� 0��)] ; (9.54)

where � [� 0; s� v(� 0��)] is the linear density of the beam particles passing the location

s at time � 0 � � ago. Now let �(� ; s) represent the line density of the individual bunch,

which has a phase lead of 2��=M for mode � compared with the preceding bunch �sep =

T0=M ahead, and is in
uenced by all the preceding bunches. The location argument s

{The sine term can be included at the expense of a slightly more complicated derivation.
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of � in Eq. (9.54) becomesk s� k�sep � v(� 0��), with k = 0; 1; 2; � � � . For simplicity,

we neglect the time delay � 0�� . In the time variation e�i
s=v where 
 � m!s, this

approximation causes a phase delay 
(� 0��) which is negligible in comparison with the

phase change due to the resonator. We will also neglect the variation in the attenuation

factor over one bunch e��(�
0��), but we retain the attenuation factor between bunches

e��k�sep . Then the wake force exerted on a particle in the �th coupled-bunch mode can

be written as

hF k
0�(� ; s)i=�

e2!rRs

QC

1X
k=0

e2�ik�=M�k��sep

Z
one
bunch

d� 0cos[!r(�
0��+k�sep)] �1(� 0)e�i
(s=v�k�sep) ;

(9.55)

where Eq. (9.10), the `time' variations of preceding bunches in the �th coupled mode,

have been used. It is worth pointing out that the lower limits of the summation and

integration cannot be extended to �1 as before, because the explicit expression of the

wake function has been used. Note that only the perturbed line density �1 is included.

This is because we are interested in the growth rate here and the unperturbed part �0
will not contribute to the growth rate. Changing the integration variables from (�;�E)

to (r; �) while keeping only the azimuthal m,

�1(�
0)d� 0 =

Z
�mRm(r

0)eim�0d� 0d�E 0 =

Z
E0!s�

2

�
�mRm(r

0)eim�0r0dr0d�0 : (9.56)

Substituting the wake force into Eq. (9.7), we arrive at

(
�m!s)Rm(r) =
ie2N�!rRs

2��2E0QT0!s

dg0
dr

1X
k=0

e2�ik�=M�k(��i
)�sep�

�
Z 1

0

r0dr0Rm(r
0)

Z �

��

d� e�im� sin�

Z �

��

d�0eim�0cos[!r(r
0 cos�0�r cos�+k�sep)] ; (9.57)

where again we have used the unperturbed distribution g0(r) given by Eq.(9.30) which

is normalized to unity. The integrations over � and �0 can now be performed using the

formulas for Bessel functions depicted in Eqs. (9.26) to (9.28), givingZ �

��

d� e�im� sin�

Z �

��

d�0eim�0 cos[!r(r
0 cos�0�r cos�+k�sep)] =

i4�2 sin k!r�sep
mJm(!rr

0)Jm(!rr)

!rr
: (9.58)

kHere we include the term k�sep which Sacherer had left out. This term is important to exhibit

Robinson's criterion of phase stability.
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Equation (9.57) now becomes

(
�m!s)Rm(r) = �2�e2NRsm�

�2E0QT0!s

dg0
dr
�

�
1X
k=0

e2�ik�=M�k(��i
)�sep sin(k!r�sep)

Z 1

0

dr0Rm(r
0)
r0Jm(!rr

0)Jm(!rr)

r
: (9.59)

Finally, we introduce Landau damping by allowing the synchrotron frequency to be a

function of the radial distance from the center of the bunch in the longitudinal phase

space. Moving 
�m!s(r) to the right side and performing an integration over rdr, Rm

can be eliminated resulting in the dispersion relation

1 = � i2�e
2MNm�Rs

�2E0T 2
0 !s!r

D(��sep)

Z 1

0

dr
dg0
dr

J2m(!rr)


�m!s(r) ; (9.60)

where we have de�ned the function��

D(��sep) = �i2��sep
1X
k=0

e2�ik�=M�k(��i
)�sep sin(k!r�sep) ; (9.61)

which contains all the information about the quality factor of the resonance and its

location with respect to the revolution harmonics. It is interesting to note that Eq. (9.60)

closely resembles Eq. (9.32). It will be shown below that D = 1 for a narrow resonance

with the resonant peak located at (qM+�)!0 +m!s. Thus the two dispersion relations

are identical. In fact, they are the same even when the resonant peak is not exactly

located at a synchrotron line.

Let us study the function D(��sep). Noting that the bunch separation is �sep =

T0=M , this function can be rewritten as

D(��sep) = ��sep

�
1

1�ex+ �
1

1�ex�
�
; (9.62)

where

x� =
2�i

M

�
q�M + �+m

!s
!0
� !r
!0

�
� ��sep : (9.63)

The q�M term comes about because we can replace � in Eq. (9.61) by q�M+�, where

q� are positive/negative integers and � = 0; 1; � � � ; M�1. When the resonance is

��We would like D = �1 when the resonance is at the upper/lower sideband. As a result, our

de�nition of D di�ers from Sacherer's by a phase.
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extremely narrow, we have ��sep = !r�sep=(2Q) � 1. The two terms in Eq. (9.62)

almost cancel each other so that D(��sep) � 0 unless !r � (jq�jM��)!0. For modes

� 6= 0 and � 6= 1
2
M if M is even, only one of the two terms in Eq. (9.62) contributes. If

!r � (jq�jM��)!0�m!s, we have jx+j � 1 or jx�j � 1 and

D(��sep) � ���sep
x�

=
�i!r=(2Q)

!r � [(jq�jM��)!0�m!s]� i!r=(2Q)
� �1 : (9.64)

When � = 0 or � = M=2 if M is even, it is possible to choose q+ and q� so that both

terms will contribute. We have

D � �i!r=(2Q)
!r � [(q+M+�)!0+m!s]� i!r=(2Q)

+
�i!r=(2Q)

!r � [(jq�jM��)!0�m!s] + i!r=(2Q)
;

(9.65)

where q+ = jq�j for � = 0 and jq�j = q++1 for � = M=2. Note that Eq. (9.65) is just

proportional to the di�erence between Z
k
0(q+M!0+�!0+m!s+ i�) and Z

k
0(jq�jM!0�

�!0 � m!s � i�); the Robinson's stability criterion derived in Eq. (9.49) is therefore

recovered.

On the other hand, when the resonance is broad, ��sep � 1. The �rst few terms

in Eq. (9.61) dominate. Since k = 0 does not contribute, we include here only the next

term,

D(��sep) � �i2��sep sin(!r�sep)e2�i�=M���sep : (9.66)

The magnitude jDj becomes mode independent and exhibits a maximum when !r�sep =

2�
�
q + 1

4

�
. Thus the coupled-bunch modes near � = �1

4
M are most strongly excited,

although jDj will be much less than unity. Figure 9.4 plots jDj versus !r=!0 for the

situation ofM=10 bunches. The solid vertical lines show jDj � 1 for narrow resonance.

The dotted curve are for broadband resonance when the bunch-to-bunch attenuation

decrement is ��sep = 4; the values of jDj are small and appear to be mode-independent.

The dashed curves correspond the intermediate case with bunch-to-bunch attenuation

decrement ��sep = 1. From left to right, they are for modes � = 0, 1 and 9, 2 and 8,

3 and 7, 4 and 6, 5. We see that jDjmax is roughly the same for each mode. Note that

��sep = 1 translates into (�!r=!0)FWHM = M=� = 3:2 or the resonance covers more

than 3 revolution harmonics. Apparently, the �gure shows that no mode will be excited

if the !r=!0 falls exactly on qM or q(1
2
M) if M is even. This incorrect result appears

because in drawing the plot, the limit !s ! 0 has been taken. Figure 9.5 plots jDjmax

versus the bunch-to-bunch decrement ��sep, showing that it is less than 5% from unity

when ��sep < 0:55.
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Figure 9.4: jDj as functions of resonant harmonic !r=!0 for M = 10 bunches

when bunch-to-bunch decay decrement ��sep � 1 for narrowband resonance (solid),

��sep = 4 for broadband resonance (dots), and ��sep = 1 for resonance in between

(dashes). The dashed curves from left to right represent coupled-bunch modes � = 0,

1 and 9, 2 and 8, 3 and 7, 4 and 6, 5. The excitations at !r=!0 = 0, or M=2 are

zero, because we have set the synchrotron frequency to zero in the plot.

Figure 9.5: jDjmax as a function of bunch-to-bunch decay decrement ��sep. Note

that jDjmax � 1 for narrow resonances but drops very rapidly as the resonance

becomes broader.
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In the event that the spread in synchrotron frequency is small, we can obtain from

Eq. (9.60) the synchrotron frequency shift


�m!s = � i2�e
2NRsmM�

�2E0!s!rT 2
0

D(��sep)

Z 1

0

dr
dg0
dr

J2m(!rr) ; (9.67)

where the integral can be viewed as a form factor which is distribution dependent. A

dimensionless form factor

Fm(��) = �4�m�̂

!r

Z 1

0

dr
dg0
dr

J2m(!rr) (9.68)

can now be de�ned for each azimuthal, where �̂ is the half bunch length and �� = 2!r�̂

is the change in phase of the resonator during the passage of the whole bunch. Then

the frequency shift can be rewritten as


�m!s =
i�e2NMRs

4��2E0�sT0�̂
D(��sep)Fm(��) ; (9.69)

where �s = !s=!0 is the synchrotron tune.

We take as an example the parabolic distribution in the longitudinal phase spaceyy,

which implies

g0(r) =
2

��̂ 4
(�̂ 2 � r2) and

dg0
dr

= � 4r

��̂ 4
: (9.70)

The form factor is

Fm(��) =
32m

��

Z 1

0

J2m(
1
2
x��)xdx

=
16m

��

h
J2m
�
1
2
��
�� Jm+1

�
1
2
��
�
Jm�1

�
1
2
��
�i
; (9.71)

which is plotted in Fig. 9.6 for m = 1 to 6. The form factor speci�es the eÆciency with

which the resonator can drive a given mode. We see that the maximum value of F1 for the

dipole mode occurs when �� � �. This is to be expected because the head and tail of the

bunch will be driven in opposite directions. Similarly, the quadrupole or breathing mode

is most eÆciently driven when �� � 2�, and so on for the higher modes. In general,

mode m is most eÆciently driven when the resonator frequency is �� � m�. Note also

that the maximum value of Fm drops faster than m�1=2, implying that higher azimuthal

modes are harder to excite. For distributions other than the \parabolic" of Eq. (9.70),

yyThis is di�erent from the so-called parabolic distribution, which is actually parabolic line density.
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Figure 9.6: Sacherer's form factor for longitudinal oscillation inside a bunch with

azimuthal modes m = 1; 2; 3; 4; 5 and 6. The unperturbed parabolic distribution

in the longitudinal phase space, Eq. (9.70), is assumed.

we expect the form factors to have similar properties. However, a shorter bunch does not

necessarily imply a slower growth especially for the m = 1 mode, although the excitation

in the form factor Fm(��) is small. According to Eq. (9.69), the growth rate is obtained

from multiplying the form factor Fm(��) with eN=�̂ , the local linear charge density or

peak current. In fact, with a �xed number of particles in the bunch, as the bunch length

is shortened, the local linear charge density increases, thus enhancing the growth rate.

As a result, a more practical form factor should be �Fm(��) = 2Fm(��)=�� as plotted

in Fig. 9.7 in logarithmic scale. It is clear that for small ��, F1 � 1
2
�� and �F1 � 1.

From Eq. (9.67), the growth rate for the dipole mode above transition can be written as

1

�1
= Im
 =

�e2NMRs!r
2�2E0!sT 2

0

D(��sep) ; (9.72)

which agrees with the expression in Eq. (9.49) derived for short bunches. It is also

evident from Fig. 9.7 that the excitations of higher azimuthal modes will be very much

smaller.
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Figure 9.7: A more useful form factor �F (��) in logarithmic scale for longitudinal

oscillation inside a bunch with azimuthal modes m = 1; 2; 3; 4; 5 and 6. The

unperturbed parabolic distribution in the longitudinal phase space is assumed. It is

related to the Sacherer's form factor of Fig. 9.6 by �F (��) = 2F (��)=��.

9.3 Observation and Cures

The easiest way to observe longitudinal coupled-bunch instability is in a mountain-range

plot, where bunches oscillate in a particular pattern as time advances. Examples are

shown in Figs. 9.8 and 9.9. Streak camera can also be used to capture the phases of

adjacent bunches as a function of time. From the pattern of coupling, the coupled-mode

� can be determined. From the frequency of oscillation, the azimuthal mode m can also

be determined. We can then pin down the frequency !r=(2�) of the o�ending resonance

driving the instability.

Observation can also be made in the frequency domain by zooming in the region

between two rf harmonics in the way illustrated in Fig. 9.2. The coupled-bunch mode

excited will be shown as a strong spectral line in between.

Longitudinal coupled-bunch instability will lead to an increase in bunch length and

an increase in energy spread. For a light source, this translates into an increase in the

spot size of the synchrotron light.
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Figure 9.8: (color) Mountain-range plot showing coupled-bunch instability in the

Fermilab Main Injector just after injection at 8 GeV.

There are many way to cure longitudinal coupled bunch instability. The driving

resonances are often the higher-order modes inside the rf cavities. When the particular

resonance is identi�ed and if it is much narrower than the revolution frequency of the ring,

we can try to shift its frequency so that it resides in between two revolution harmonics

and becomes invisible to the beam particles. We can also study the electromagnetic

�eld pattern of this resonance mode inside the cavity and install passive resistors and

antennae to damp this particular mode. This method has been used widely in the

Fermilab Booster, where longitudinal coupled-bunch instability had been very severe

after the beam passed the transition energy. At that time, the bunch area increased

almost linearly with bunch intensity. Passive damping of several o�ending modes cured

this instability to such a point that the bunch area does not increase with bunch intensity

anymore.

Longitudinal coupled-bunch instability had also been observed in the former Fer-

milab Main Ring. Besides passive damping of the cavity resonant modes, the instability

was also reduced by lowering the rf voltage. Lowering the rf voltage will lengthen the

bunch and reduce the form factor Fm(��). This is only possible for a proton machine
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Figure 9.9: Mountain range plot showing bunches in a batch executing coupled-

bunch instability in the Fermilab Main Injector just after injection at 8 GeV

where the bunches are long. It will not work for the short electron bunches for the m = 1

dipole mode. This is because, as mentioned before, the form factor for the dipole mode

is not sensitive to the bunch length for short bunches. Even for a proton machine, the rf

voltage cannot be reduced by a large amount because proton bunches are usually rather

tight inside the rf bucket, especially during ramping.

If the growth turns out to be harmful, a fast bunch-by-bunch damper may be

necessary to damp the dipole mode (m = 1). A damper for the quadrupole mode

(m = 2) may also be necessary. This consists essentially of a wall-gap pickup monitoring

the changes in bunch length and the corresponding excitation of a modulation of the

rf waveform with roughly twice the synchrotron frequency. A feed-back correction is

then made to the rf voltage. Another way to damp the longitudinal coupled-bunch

instability is to break the symmetry between theM bunches. For example, a 5% to 10%

variation in the intensity of the bunches will help. Another way to break the symmetry
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is to have bunches not placed symmetrically in the ring. Some analysis shows that the

stability will be improved if some bunches in the symmetric con�guration are missing [3].

Prabhakar [4] recently proposed a new way to cure longitudinal coupled-bunch instability

using uneven �ll in a storage ring. We are going to discuss this method in more detail

in Sec. 9.3.4.

There can also be Landau damping, which comes from the spread of the synchrotron

frequency. The spread due to the nonlinear sinusoidal rf wave form as given by Eq. (9.51)

is usually small unless the synchronous angle is large. Electron bunches are usually much

smaller in size than the rf bucket. As a result, the spread in synchrotron frequency is

be very minimal and does not help much in Landau damping.

9.3.1 Higher-Harmonic Cavity

In order to Landau damp longitudinal coupled-bunch instability, a large spread in syn-

chrotron frequency inside the bunch is required. One way to do this is to install a

higher-harmonic cavity, sometime known as Landau cavity [5] because it provides Lan-

dau damping. For example, the higher-harmonic cavity has resonant angular frequency

m!rf and voltage rVrf, where !rf is the resonant angular frequency and Vrf the voltage

of the fundamental rf cavity. The total rf voltage seen by the beam particles becomes

V (�) = Vrf
�
sin(�s � !rf�)� r sin(�m �m!rf�)

�� Us

e
; (9.73)

where the phase angles �s and �m are chosen to compensate for Us, the radiation energy

loss, or to provide any required acceleration, We would like the bottom of the potential

well, which is the integral of V (�), to be as 
at as possible. The rf voltage seen by the

synchronous particle is compensated to zero by the energy lost to synchrotron radiation.

In addition, we further require

@V

@�

����
�=0

= 0 and
@2V

@� 2

����
�=0

= 0 ; (9.74)

so that the potential will become quartic instead. We therefore have 3 equations in 3

unknowns:

sin�s = r sin�m +
Us

eVrf
; (9.75)

cos�s = rm cos�m ; (9.76)

sin�s = rm2 sin�m ; (9.77)
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from which �m and r can be solved easily (Exercise 9.5). For small-amplitude oscillation,

the potential becomes

�
Z
V (�)d(!rf�) �! m2�1

24
(!rf�)

4Vrf cos�s ; (9.78)

which is quartic and the synchrotron frequency is (Exercise 9.6)

!s(�)

!s0
=
�

2

�
m2�1
6

�1=2
!rf�

K(1=
p
2)

2
6664
1�

�
m2

m2 � 1

Us

eVrf

�2

1�
�
Us

eVrf

�2

3
7775
1=4

; (9.79)

where the last factor can usually be neglected; its deviates from unity by only � [(m2�
1)Us=(2eVrf)]

2 if the synchronous angle is small. In above, !s0 is the synchrotron angular

frequency at zero amplitude when the higher-harmonic cavity voltage is turned o�, and

K(1=
p
2) = 1:854 is the complete elliptic integral of the �rst kind which is de�ned as

K(t) =

Z �=2

0

d�p
1� t2 sin2 �

: (9.80)

We see that the synchrotron frequency is zero at zero amplitude and increases linearly

with amplitude. This large spread in synchrotron frequency may be able to supply ample

Landau damping to the longitudinal coupled-bunch instability.

In the situation where there is no radiation loss and no acceleration, Us = 0, the

solution of Eqs. (9.75) to (9.77) simpli�es, giving �s = �m = 0 and the ratio of the

voltages of higher-harmonic cavity to the fundamental r = 1=m. Of course, it is also

possible to have r 6= 1=m. Then the synchrotron frequency at the zero amplitude will not

be zero and the spread in synchrotron frequency can still be appreciable. When m = 2,

i.e., having a second-harmonic cavity, the mathematics simpli�es. The synchrotron

frequencies for various values of r are plotted in Fig. 9.10. Here, r = 0 implies having

only the fundamental rf while r = 1
2
the situation of having the synchrotron frequency

linear in amplitude for small amplitudes. In between, the synchrotron frequency spread

decreases as r decreases. Notice that for 0:3 <� r < 0:5, the synchrotron frequency has a

maximum near the rf phase of � 100Æ. Particles near there will have no Landau damping

at all and experience instability. Thus the size of the bunch is limited when a double

cavity is used. Also the size of the bunch cannot be too small because of two reasons:

�rst, the average synchrotron frequency may have been too low, and second, the central

region of the phase space is a sea of chaos [7].
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Figure 9.10: The normalized synchrotron tune of a double rf system as a function

of the peak rf phase � for various voltage ratio r. Here, the higher-harmonic cavity

has frequency twice that of the fundamental. When r > 1
2 , the center of the bucket

becomes an unstable �xed point and two stable �xed points emerge [7].

A Landau cavity increases the spread in synchrotron frequency, therefore it is ideal

in damping mode-coupling instability and coupled-bunch instability. However, it may

be not helpful for the Keil-Schnell type longitudinal microwave instability, which is valid

for coasting beams. This method was �rst applied successfully with a third-harmonic

cavity to increase Landau damping at the Cambridge Electron Accelerator (CEA) [8].

It was later applied to the Intersecting Storage Ring (ISR) at CERN SR a 6th harmonic

cavity to cure mode-coupling instability [9]. Recently, a third-harmonic cavity has been

reported in the SOLEIL ring in France to give a relative frequency spread of about 200%.

However, since the center frequency has been dramatically decreased (not exactly to

zero), the net result is a poor improvement in the stabilization. The gain in the stability

threshold has been only 30% [6].

Actually, with a higher-harmonic cavity, the bunch becomes more rectangular-like

in the longitudinal phase space, or particles are not so concentrated at the center of the

bunch. Assuming the bunch area to be the same, the Boussard-modi�ed Keil-Schnell

threshold is proportional to the energy spread. Since the bunch becomes more 
attened,

the maximum energy spread which is at the center of the bunch is actually reduced, and
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so will be the instability threshold. However, spreading out the particles longitudinally

does help to increase the bunching factor and decrease the incoherent self-�eld or space-

charge tune shift. At the CERN Proton Synchrotron Booster, an rf system with higher

harmonics 5 to 10 has raised the beam intensity by about 25 to 30% [10]. For the

Cooler Ring at the Indiana University Cyclotron Facility, a double cavity has been able

to quadruple the beam intensity [7].

9.3.2 Passive Landau Cavity

Higher-harmonic cavities are useful in producing a large spread in synchrotron fre-

quency so that single-bunch mode-mixing instability and coupled-bunch instability can

be damped. However, the power source to drive this higher-harmonic rf system can

be rather costly. One way to overcome this is to do away with the power source and

let the higher-harmonic cavity or cavities be driven by the beam loading voltage of the

circulating beam.

Let the ratio of the resonant frequencies of the higher-harmonic cavity to the fun-

damental rf cavity be m and the rf harmonic of the fundamental rf cavity be h. If the

higher-harmonic cavity has a high quality factor, the beam loading voltage is just ib, the

current component at the cavity resonant frequency, multiplied by the impedance of the

cavity. Here, for a Gaussian bunch

ib = 2I0e
�
1
2
(mh!0�� )

2
; (9.81)

where �� is the rms bunch length and !0 is the angular revolution frequency. Thus for

a short bunch, ib � 2I0 with I0 being the average current of the bunch.

The higher-harmonic cavity must have suitable shunt impedance Rs and quality

factor Q, and this can be accomplished by installing necessary resistor across the cavity

gap. Thus, Rs and Q can be referred to as the loaded quantities of the cavity. For a

particle arriving at time � ahead of the synchronous particle, it sees the total voltage

V (�) = Vrf sin(�s � !rf�)� ibRsRe
�

1

1 + i2QÆ
eim!rf�

�
� Us

e
; (9.82)

where !rf = h!0 is the angular rf frequency determined by the resonator in the rf klystron

that drives the fundamental rf cavity and the negative sign in front of ib indicates that
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this beam loading voltage is induced by the image current and opposes the beam current.

In above,

Æ =
1

2

�
!r
m!rf

� m!rf
!r

�
� !r �m!rf

!r
(9.83)

represents the deviation of the resonant angular frequency !r of the higher-harmonic

cavity from the mth multiple of the rf angular frequency. Of course, this is related to

the detuning angle  of the higher-harmonic cavity, which we introduce in the usual way

as

tan = 2QÆ : (9.84)

Now, Eq. (9.82) can be rewritten as

V (�) = Vrf sin(�s � !rf�)� ibRs cos cos( �m!rf�)� Us

e
: (9.85)

Again to acquire the largest spread in synchrotron frequency, we require

V (0) = 0 ; V 0(0) = 0 ; V
00

(0) = 0 ; (9.86)

so that the potential for small amplitudes becomes quartic,

U(�) = �
Z
V (�)d� = ��

4

4!
V

000

(0) : (9.87)

Since we are having exactly the same quartic potential as in an rf system with an active

Landau cavity, we expect the synchrotron frequency to be exactly the same as the

expression given by Eq. (9.79) when the oscillation amplitude is small.

The set of requirements, however, are di�erent from that of the active Landau cavity

system. Here, the requirements are

Vrf sin�s = ibRs cos
2  + Us=e ; (9.88)

Vrf cos�s = �mibRs cos sin ; (9.89)

Vrf sin�s = m2ibRs cos
2  : (9.90)

For an electron machine which is mostly above transition, the synchronous angle �s is

between 1
2
� and �. Thus, from Eq. (9.89), we immediately obtain

sin 2 > 0 =) 0 <  <
�

2
; (9.91)
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Figure 9.11: For the higher-harmonic cavity, the resonant frequency !r is above

the mth multiple of the rf frequency. The beam will be Robinson unstable above

transition. For the fundamental cavity, the resonant frequency !r0 is below the rf

frequency !rf = h!0, and the beam will be Robinson stable. The detuning of the

fundamental rf should be so chosen that the beam will be stable after traversing

both cavities.

and from Eqs. (9.83) and (9.84), !r > m!rf. This means that the beam in the higher-

harmonic cavity is Robinson unstable [4], as is illustrated in Fig. 9.11. Of course, the

fundamental rf cavity should be Robinson stable, and it will be nice if the detuning is

so chosen that the beam remains stable after traversing both cavities.

The synchrotron light source electron ring at LNLS, Brazil would like to install

a passive Landau cavity with m = 3 in order to alleviate the longitudinal coupled-

bunch instabilities. The fundamental rf system has harmonic h = 148 or rf frequency

frf = !rf=(2�) = 476:0 MHz with a tuning range of�10 kHz, and rf voltage Vrf = 350 kV.

To overcome the radiation loss, the synchronous phase is set at �s0 = 180Æ� 19:0Æ. This

gives a synchrotron tune at small amplitudes �s = 6:87�10�3 or a synchronous frequency
fs = 22:1 kHz.
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With the installation of the passive Landau cavity, the synchronous phase must be

modi�ed to a new �s, which is obtained by solving Eqs. (9.88) and (9.90):

sin�s =

�
m2

m2�1
��

Us

eVrf

�
=

m2

m2�1 sin�s0 : (9.92)

Thus,

�s0 = 180Æ � 19:0Æ =) �s = 180Æ � 21:49Æ ; (9.93)

where m = 3 has been used. The detuning  of the higher-harmonic cavity can be

obtained from Eqs. (9.89) and (9.90), or

tan = �m cot�s =)  = 82:53Æ : (9.94)

Finally from Eq. (9.90),

ibRs =
Vrf sin�s
m2 cos2  

: (9.95)

With ib = 2I0 = 0:300 A and Vrf = 350 kV, we obtain the shunt impedance of the

higher-harmonic cavity to be Rs = 2:81 M
. The power taken out from the beam is

P =
1

2

i2bRs

1 + tan2  
= 2:14 kW ; (9.96)

which is not large when compared with the power loss due to radiation

Prad = NUsf0 = I0Vrf sin�s0 = 17:09 kW ; (9.97)

where N is the number of electrons in the bunch. The higher-harmonic cavity has a

quality factor of Q = 45000 and a resonant frequency fr � 3fr0 = 1428 MHz. From the

detuning, it can easily found that the frequency o�set is fr � 3frf = 121 kHz.

Now let us compute the growth rate for one bunch at the coherent frequency 
.

For one particle of time advance � , we have from Sacherer's integral equation for a short

bunch [2],


2 � !s(�)
2 =

i�eI0
E0T0

X
q

(q!0 + 
)Z
k
0 (q!0 + 
) : (9.98)

where � is the slip factor and we have retained the dependency of the synchrotron

frequency !s on � because of its large spread in the presence of the higher-harmonic

cavity. From Eq. (9.79), this dependency is

!s(�)

!s0
=
�

2

�
m2�1
6

�1=2
!rf�

K(1=
p
2)

s
cos�s
cos�s0

; (9.99)
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where the last factor amounts to 0.9920 and can therefore be safely abandoned. Thus,

the average !2
s over the whole bunch just gives the square of the rms frequency spread,

h!2
si = �2!s =

"
�!s0
2

r
m2�1
6

!rf��

K(1=
p
2)

#2
: (9.100)

The FWHM natural bunch length at Vrf = 350 kV is �
FWHM

= 70:6 ps; thus �� = 30:0 ps.

This gives �!s = �
FWHM

=(2
p
2 ln 2) = 12:2 kHz.

Since the synchrotron frequency is now a function of the o�set from the stable �xed

point of the rf bucket, a dispersion relation can be obtained from Eq. (9.98) by integrating

over the synchrotron frequency distribution of the bunch. Here, we are interested in the

growth rate without Landau damping, which is given approximately by

1

�
= Im
 � �eI0!rf

2E0T0(2�!s)

nh
Re Zk

0(!rf + 2�!s)�Re Zk
0(!rf � 2�!s)

i
+m

h
Re Zk

0(m!rf + 2�!s)�Re Zk
0(m!rf � 2�!s)

io
; (9.101)

where the mean angular synchrotron frequency has been assumed to be

�!s = 2�!s : (9.102)

The growth rate can be computed easily by substituting into Eq. (9.101) the expression

for Re Zk
0 . However, the di�erences in Eq. (9.101) can also be approximated by deriva-

tives. For the higher-harmonic cavity, both the upper and lower synchrotron sidebands

lie on the same side of the higher-harmonic resonance as indicated in Fig. 9.11. Their

di�erence, � 4�!s=(2�) = 7:76 kHz, is also very much less than the cavity detuning

(!r �m!rf)=(2�) = 121 kHz. Recalling that

Re Zk
0 (!) = Rs cos

2  ; (9.103)

where the detuning  is given by Eq. (9.84), the second term can be written as a

di�erential,

Re Zk
0(m!rf + 2�!s)�Re Zk

0(m!rf � 2�!s) �
�
Rs cos

2  sin 2 
2Q

!r

�
4�!s : (9.104)

For the fundamental cavity, the resonant frequency is !r0=(2�) = 476:00 MHz.

The detuning is usually � = �10 kHz at injection and is reduced to � = �2 kHz in
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storage mode when the highest electron energy is reached. Thus, the upper and lower

synchrotron sidebands lie on either side of the resonance as illustrated in Fig. 9.11. Since

�� �!s , we can also write the �rst term of Eq. (9.101) as a di�erential about !r0+ �!s,

with the assumption that the resonance is symmetric about the resonant frequency !r0.

Thus,

Re Zk
0(!rf + �!s)�Re Zk

0(!rf � �!s)

= Re Zk
0 (!r0+�+�!s)�Re Zk

0(!r0��+�!s) �
�
Rs cos

2  !s sin 2 !s

2Q

!r0

�
2� ; (9.105)

where  !s , which is similar to a detuning angle by the amount �!s, is de�ned as

tan !s = 2Q
�!s
!r0

: (9.106)

We arrive at

1

�
=

2�eI0Q

E0T0

�
�

�!s
Rs cos

2  !s sin 2 !s

��
fund

+ Rs cos
2  sin 2 

��
higher

�
; (9.107)

where the contributions from the fundamental and higher-harmonic cavities are indi-

cated by the subscripts `fund' and `higher', respectively. The square bracketed factor in

Eq. (9.107) becomes�
�

�!s
Rs cos

2  !s sin 2 !s

��
fund

+Rs cos
2  sin 2 

��
higher

�
= (�0:1953 + 0:0122) M
 ;

(9.108)

where we have used for the fundamental cavity, the shunt impedance Rs = 3:84 M
, and

quality factor Q = 45000 exactly the same as the higher harmonic cavity. The two-rf

system turns out to be Robinson stable; the damping rate is 54600 s�1 or a damping time

of 0.018 ms. However, it is important to point out that the growth rate formula given by

Eq. (9.101) is valid only if the shift and spread of the synchrotron frequency are much

less than some unperturbed synchrotron frequency. Here, the synchrotron frequency is

linear with the o�set from the stable �xed point of the longitudinal phase space and

the spread is therefore very large. Thus, Eq. (9.101) can only be viewed as an estimate.

The employment of a mean synchrotron angular frequency �!s can also be questionable.

Although the assumption of the mean synchrotron angular frequency in Eq. (9.102) is

not sensitive to the higher-harmonic-cavity term in Eq. (9.101), however, it is rather

sensitive to the fundamental-cavity term. The dependence is complicated since the

equivalent detuning  !s depends on �!s also. For example, if we use �!s = 1:5�!s instead,
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the damping time decreases to 0.013 ms, while �!s = 3:0�!s increases the damping time

to 0.036 ms. With this uncertainty, a suggestion may be to increase the detuning �

of the fundamental to � � �4 kHz so that it becomes more certain that the two-rf

system will be Robinson stable, otherwise, the purpose of the higher-harmonic cavity

can be defeated, because some of the spread of the synchrotron frequency obtained will

be used to �ght the Robinson's instability created instead of other longitudinal collective

instabilities of concern.

Now let us estimate how large a Landau damping we obtain from the passive Landau

cavity coming from the spread of the synchrotron frequency. Following Eq. (9.52), the

stability criterion is roughly

1

�
<�
!s(
p
6�� )

4
; (9.109)

where the synchrotron angular frequency spread is given by Eq. (9.79). The spread in

synchrotron angular frequency has been found to be !s(
p
6�� ) = 39:6 kHz. In other

words, the higher-harmonic cavity is able to damp an instability that has a growth time

longer than 0.101 ms, an improvement of 57 folds better than when the higher-harmonic

cavity is absent. Thus, theoretically, this Landau damping is large enough to alleviate

the Robinson's antidamping of higher-harmonic cavity as well.

We notice that the required shunt impedance of the passive Landau cavity Rs =

2:81 M
 is large, although it is still smaller than the shunt impedance of 3.84 M
 of the

fundamental cavity. It is easy to understand why such large impedance is required. The

synchronous angle for a storage ring without the Landau cavity is usually just not too

much from 180Æ, here �s0 = 180Æ�19:0Æ, because of the compensation of a small amount

of radiation loss. The rf gap voltage phasor is therefore almost perpendicular to the beam

current phasor. In order that the beam loading voltage contributes signi�cantly to the rf

voltage, the detuning angle of the passive higher-harmonic cavity must therefore be large

also, here  = 82:53Æ. In fact, without radiation loss to compensate, the beam loading

voltage phasor would have been exactly perpendicular to the beam current phasor. Since

cos = 0:130 is small, the shunt impedance of the higher-harmonic cavity must therefore

be large. In some sense, the employment of the higher-harmonic cavity is not eÆcient at

all, because we are using only the tail of a large resonance impedance, as is depicted in

Fig. 9.11. This is not a waste at all, however, because we can do away with the generator

power source for this cavity. Also, the large detuning angle implies not much power will

be taken out from the beam as it loads the cavity, only 2.14 kW here. On the other

hand, the detuning of the fundamental cavity need not be too large. This is because



9.3 Observation and Cures 9-33

the rf gap voltage is supplied mostly by the generator voltage and only partially by the

beam loading in the cavity.

The most important question here is how do we generate a large shunt impedance

for the higher-harmonic cavity. Usually it is easy to lower the shunt impedance by

adding a resistor across the cavity gap. Some other means will be required to raise

the shunt impedance, in case it is not large enough. One way is to coat the interior

of the higher-harmonic cavity with a layer of medium that has a higher conductivity.

However, it is hard to think of any medium that has a conductivity very much higher

than that of the copper surface of the cavity. For example, the conductivity of silver

is only slightly higher. Another way to increase the conductivity signi�cantly is the

reduction of temperature to the cryogenic region. Notice that Rs=Q is a geometric

property of the cavity. Raising Rs will raise Q also. However, a higher quality factor is

of no concern here, because the requirements in Eqs. (9.88), (9.89), and (9.90) depend

on the detuning  only and are independent of Q. With the same detuning  , a higher

Q just implies a smaller frequency o�set between the resonant angular frequency !r of

the higher-harmonic cavity and the mth multiple of the rf angular frequency.

The shunt impedance of the higher-harmonic cavity determines the rf voltage to be

used in the fundamental cavity. We can rewrite Eq. (9.95) as

ibRs

Us=e
=

�
m2 � 1

m2

��
Vrf
Us=e

�2

� 1 ; (9.110)

after eliminating �s and  with the aid of Eqs. (9.92) and (9.94). Thus, for a given

beam current, a small shunt impedance of the higher-harmonic cavity translates into

small rf voltage. Notice that the right side is quadratic in Vrf. For example, with the

same radiation loss, when the shunt impedance of the higher-order cavity decreases from

6.12 to 2.81 M
, the rf voltage Vrf has to decrease from 500 kV to 350 kV. A low rf

voltage is usually not favored because the electron bunches will become too long.

In order to maximize Landau damping, criteria must be met so that the rf potential

becomes quartic. As is shown in Fig. 9.10 for a m = 2 double rf system, when the rf

voltage ratio deviates from r = 1=m = 0:5 by 20% to 0.4, the spread in synchrotron

frequency for a small bunch decreases tremendously to almost the same tiny value as in

the single rf system. There is a big di�erence between an active Landau cavity and a

passive Landau cavity. In an active Landau cavity, the criteria in Eqs. (9.77) to (9.77)

are independent of the beam intensity. On the other hand, the criteria for the operation

of a passive cavity, Eqs. (9.88), (9.89), and (9.90), depend on the bunch intensity. What
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will happen when the bunch intensity changes signi�cantly? Let us recall how we arrive

at the solution of the three equations of the passive two-rf system. The new synchronous

phase �s, as given by Eq. (9.92), is determined solely by the ratio of the radiation loss

Us to the rf voltage Vrf . while the detuning  is just given by �m cot�s. The only

parameter that depends on the beam current is the shunt impedance Rs. Thus, the

easiest solution is to install a variable resistor across the the gap of the higher-harmonic

cavity and adjust the proper shunt impedance by monitoring the intensity of the electron

bunches.

In the event that the shunt impedance is not adjustable, one can adjust instead

the rf voltage so that Eq. (9.110) remains satis�ed with the new current but with the

preset Rs. With the new rf voltage, the synchronous phase �s has to be adjusted so that

Eq. (9.92) remains satis�ed. This will alter the detuning  according to Eq. (9.94). The

only way to achieve the new detuning is to vary the rf frequency. This will push the

beam radially inward or outward. As the beam current changes by �I0=I0, to maintain

the criteria of the quartic rf potential, the required changes in rf voltage, synchronous

angle, and detuning of the higher-harmonic cavity are, respectively,

�Vrf
Vs

=
1

2

�
m2

m2�1
Vs
Vrf

� �
m2�1
m2

V 2
rf

V 2
s

� 1

�
�I0
I0

; (9.111)

�(� � �s) = �
"�

m2�1
m2

Vrf
Vs

�2

� 1

#�1=2
�Vrf
Vs

; (9.112)

� =
1

2m

"�
m2�1
m2

Vrf
Vs

�2

� 1

#�1=2
�I0
I0

; (9.113)

where Us = eVs is the energy loss per turn due to synchrotron radiation. The change

of the detuning angle  leads to a fractional change in the rf frequency and therefore a

fractional change in orbit radius

�R

R
= �m

2�1
4mQ

�
m2�1
m2

V 2
rf

V 2
s

� 1

�"�
m2�1
m2

Vrf
Vs

�2

� 1

#�1=2
�I0
I0

; (9.114)

where R is the radius of the storage ring. These changes are plotted in Fig. 9.12 for

the LNLS double rf system when he beam current varies by �20%. Because of the high
quality factors Q of the cavities, the radial o�set of the beam turns out to be very small,

less than �0:14 mm for a �20% variation of beam current.
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Figure 9.12: Plots showing the required variations of rf voltage Vrf , synchronous

angle �s, higher-harmonic-cavity detuning  , and beam radial o�set �r to maintain

the criteria of the quartic rf potential, when the beam current varies by �20%.
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9.3.3 Rf Voltage Modulation

The modulation of the rf system will create nonlinear parametric resonances, which

redistribute particles in the longitudinal phase plane. The formation of islands within

an rf bucket reduces the density in the bunch core and decouples the coupling between

bunches. As a result, beam dynamics properties related to the bunch density, such as

beam lifetime, beam collective instabilities, etc, can be improved.

Here we try to modulate the rf voltage with a frequency �m!0=(2�) and amplitude

�, so that the energy equation becomes [11]

d�E

dn
= eVrf[1 + � sin(2��mn+ �)][sin(�s � h!0�)� sin�s]� [U(Æ)� Us] ; (9.115)

where � is a randomly chosen phase, �m is the modulating tune, � is the fractional voltage

modulation amplitude, Us and U(Æ) denote the energy loss due to synchrotron radiation

for the synchronous particle and a particle with momentum o�set Æ. This modulation

will introduce resonant-island structure in the longitudinal phase plane. There are two

critical tunes: �
�1 = 2�s +

1
2
��s ;

�2 = 2�s � 1
2
��s :

(9.116)

If we start the modulation by gradually increasing the modulating tune �m towards �2
from below, two islands appear inside the bucket from both sides, as shown in the second

plot of Fig. 9.13. The phase space showing the islands is depicted in Fig. 9.14. As �m
is increased, these two islands come closer and closer to the center of the bucket and the

particles in the bunch core gradually spill into these two islands, forming 3 beamlets.

When �m reaches �2, the central core disappears and all the particles are shared by the

two beamlets in the two islands. Further increase of �m above �2 moves the two beamlets

closer together. When �m equals �1, the two beamlets merge into one. Under all these

situations, the two outer islands rotate around the center of the rf bucket with frequency

equal to one half the modulation frequency. Every rf bucket has the same phase space

structure of having two or three islands rotating at the same angular velocity and with

the roughly same phase. The only possible small phase lag is due to time-of-
ight.

Therefore, only coupled mode � = 0 will be allowed, unless the driving force is large

enough to overcome the voltage modulation.

Rf voltage modulation has been introduced into the light source at the Synchrotron

Radiation Research Center (SRRC) of Taiwan to cope with longitudinal coupled-bunch
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Figure 9.13: (Color) Simulation results of rf voltage modulation. The modula-

tion frequency is increased from top to bottom and left to right. The modulation

amplitude is 10% of the cavity voltage. The 4th plot is right at critical frequency

�2f0 = 49:6275 kHz and the 7th plot right at critical frequency �1f0 = 52:1725 kHz.
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Figure 9.14: Top �gures show separatrices and tori of the time-independent Hamil-

tonian with voltage modulation in multi-particle simulation for an experiment at

Indiana University Cyclotron Facility. The modulation tune is below �2 with the

formation of 3 islands on the left, while the modulation tune is above �2 with the

formation of 2 islands on the right. The lower-left plot shows the �nal beam dis-

tribution when there are 3 islands, a damping rate of 2.5 s�1 has been assumed.

The lower-right plot shows the longitudinal beam distribution from a BPM sum

signal accumulated over many synchrotron periods. Note that the outer two beam-

lets rotate around the center beamlet at frequency equal to one-half the modulation

frequency.
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instability [12]. The synchrotron frequency was �sf0 = 25:450 kHz. A modulation fre-

quency slightly below twice the synchrotron frequency with � = 10% voltage modulation

was applied to the rf system. The beam spectrum measured from the beam-position

monitor (BPM) sum from a HP4396A network analyzer before and after the modulation

is shown in Fig. 9.15. It is evident that the intensities of the beam spectrum at the

annoying frequencies have been largely reduced after the application of the modulation.

The sidebands around the harmonics of 587.106 Hz and 911.888 MHz are magni�ed in

Fig. 9.16. We see that the synchrotron sidebands have been suppressed by very much.

The multi-bunch beam motion under rf voltage modulation was also recorded by streak

camera, which did not reveal any coupled motion of the bunches. Because of the suc-

cessful damping of the longitudinal coupled-bunch instabilities, this modulation process

has been incorporated into the routine operation of the light source at SRRC.

9.3.4 Uneven Fill

In a storage ring with M identical bunches evenly spaced, there will be M modes of

coupled-bunch oscillation, of which about half are stable and half unstable in the presence

of an impedance, if all other means of damping are neglected. Take the example of having

the rf harmonic h = M = 6 as illustrated in Fig. 9.2. If there is a narrow resonant

impedance in the rf cavity located at !r � (qM +�)!0 with � = 4, coupled-bunch mode

� = 4 becomes highly unstable. At the same time, this resonant impedance also damps

coupled-bunch mode M � � = 2 heavily. Usually, we only care for the mode that is

unstable and pay no attention the mode that is damped. In some sense, the damping

provided by the impedance is rendered useless or has been wasted. However, if there is

another narrow resonant impedance located at the angular frequency (qM + �0)!0 with

�0 = 2. This impedance excites coupled-bunch mode 2, but damps coupled-bunch mode

4. If this impedance is of the same magnitude as the �rst one, both coupled-bunch modes

2 and 4 can become stable. Thus, having more narrow resonances in the impedance does

not necessarily imply more instabilities. If they are located at the desired frequencies,

they can be helping each other so that the excitation of one can be canceled by the other.

This method of curing coupled-bunch instability was proposed in Ref. [13] by creating

extra resonances in the impedance in the accelerator ring. However, extra resonances

in the impedance are not necessary. The same purpose can also be served if we can

couple the two coupled-bunch modes together, for example modes 2 and 4 in the above

example, the damped mode will be helping the growth mode. If the resulting growth
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Figure 9.15: (Color) Beam spectrum from BPM sum signal before and after ap-

plying rf voltage modulation. The synchrotron frequency was 25.450 kHz. The

voltage was modulated by 10% at 50.155 kHz. The frequency span of the spectrum

is 500 MHz, which is the rf frequency.
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Figure 9.16: (Color) Beam spectrum zoom in from Fig. 9.15. The revolution har-

monic frequency of the left is 587.106 MHz and the right is 911.888 MHz. The

frequency span of the spectrum is 200 kHz.
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rates of the two coupled modes fall lower than the synchrotron radiation damping rate

and the Landau damping rate in the ring, the coupled-bunch instability will be cured.

This method of cure is called modulating coupling proposed by Prabhakar [4, 14], and

the coupling is accomplished with an uneven �ll in the ring. We saw in Eq. (9.48) that

wake �eld left by previous bunch passages contributes to a coherent synchrotron tune

shift in the bunch. For an unevenly �lled ring, the tune shifts for di�erent bunches will

be di�erent. This provides a spread in synchrotron tune and therefore extra Landau

damping, which is another idea proposed by Prabhakar.

Let us go over the uneven-�ll theory brie
y. Consider M point bunches evenly

placed in the ring, but they may carry di�erent charges. The arrival time advance �n of

the nth bunch at time s obeys the equation of motion,

��n + 2dr _�n + !2
s�n =

e�

�2E0T0
Vn ; (9.117)

where dr is the synchrotron radiation damping rate and the overdot represents derivative

with respect to s=v. Here Vn(s) is the total wake voltage seen by bunch n, and is given

by

Vn(s) =
1X

p=�1

M�1X
k=0

qkW
0
0

�
tpn;k + �k(s� vtpn;k)� �n(s)

�
; (9.118)

where qk is the charge of bunch k, tpn;k = (pM + n � k)Tb is the time bunch k is ahead

of bunch n p turns ago, and Tb = T0=M is the bunch spacingy. Since the deviation due

to synchrotron motion is small compared with the bunch spacing, Eq. (9.118) can be

expanded, resulting

Vn(s) =
1X

p=�1

M�1X
k=0

qk
�
�k(s� vtpn;k)� �n(s)

�
W 00

0

�
tpn;k
�
: (9.119)

yIn Eq. (9.9), we have kC+(s`�sn) in the argument of the wake functionW 0
0, where we are sampling

the wake force on the nth bunch due to the `th bunch. There, sn represent the distance along the ring

measured from some reference point to the nth bunch in the same direction of bunch motion. Thus,

the `th bunch is ahead of the nth bunch by the distance s` � sn. In Eq. (9.118), we count the number

of bunch spacings instead. Thus, the kth bunch is ahead the nth bunch by the time (n� k)Tb, since we

number the bunches from upstream to downstream or in the opposite direction of bunch motion. Note

that the term v(� 0 � �) in the argument of the linear density in Eq. (9.8) has been neglected because

this will only amount to a phase delay 
(� 0 � �) where 
 � !s and is very much less than the phase

change !r(�
0 � �).
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If all bunches carry the same charge, we have the situation of even �ll and the M

symmetric eigenmodes arez

�` =
1p
M

0
BBBBB@

1

e�i`�

e�2i`�

...

e�i(M�1)`�

1
CCCCCA ; ` = 0; 1; � � � ;M�1; � =

2�

M
: (9.120)

They form an orthonormal basis which we called the even-�ll-eigenmode (EFEM) basis

For an uneven �ll, it is natural to expand the new eigenmodes using as a basis the

EFEMs. The arrival time advances �n(s) for the M bunches in Eq. (9.117) can now be

written as0
B@

�0
...

�M�1

1
CA = &0�0 + � � �+ &M�1

�M�1 or �n(s) =
1p
M

M�1X
m=0

&m(s)e�i2�nm=M ; (9.121)

where the expansion coeÆcients can be written inversely as

&m(s) =
1p
M

M�1X
n=0

�n(s)e
i2�nm=M : (9.122)

Assuming the ansatz

�k(s) / e�i
s=v ; (9.123)

where the collective frequency 
 is to be determined, the voltage from the wake can now

be written as

Vn(s) =
1p
M

1X
p=�1

M�1X
k;m=0

qk&
m(s)e�i2�nm=M

h
ei(m!0+
)t

p
n;k � 1

i
W 00

0 (t
p
n;k) ; (9.124)

where

&m(s) / e�i
s=v : (9.125)

zHere, coupled-bunch mode ` implies the center-of-mass of a bunch lags its predecessor by the phase

2�`=M . Thus, coupled-bunch mode ` here is the same as coupled-bunch mode M � ` discussed in the

earlier part of this Chapter. There, the center-of-mass of a bunch leads its predecessor by the phase

2�`=M .
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Next project the whole Eq. (9.117) onto the `th EFEM, giving

�&` + 2dr _&
` + !2

s&
` =

e�

�2E0M

1X
p=�1

M�1X
n;m;k=0

qk
T0
&m(s)ei2�n(`�m)=M

h
ei(m!0+
)t

p
n:k � 1

i
W 00

0 (t
p
n:k) : (9.126)

There are too many summations over bunch number. We can eliminate one by de�ning

the integer variable u = pM +n�k = tpn:k=Tb. After that,
P

p ! 1
M

P
u. The summand

becomes independent of n and we have
P

n =M . The right side of Eq. (9.126) becomes

R:S: =
e�

�2E0M

1X
u=�1

M�1X
m=0

Il�m&
m(s)ei2�u(`�m)=M

�
ei(m!0+
)uTb � 1

�
W 00

0 (uTb) ; (9.127)

where we have introduced the complex amplitude of the pth revolution harmonic in the

beam spectrum,

Ip =
M�1X
k=0

ike
i2�kp=M ; (9.128)

with ik = qk=T0 denoting the average current of bunch k. For an evenly �lled ring, the

average beam current of each bunch is the same. Let us go to the frequency space by

introducing the longitudinal impedance,

W 0
0(t) =

Z
d!

2�
Z
k
0 (!)e

�i!t : (9.129)

The summation over u can now be performed using Poisson formula resulting in the

di�erence of two Æ-functions, which facilitate the integration over ! resulting in

R:S: = � ie�

�2E0T0

1X
p=�1

M�1X
m=0

Il�m&
m(s)

n
[(pM+`)!0+
]Z

k
0 [(pM+`)!0+
]

� [(pM+`�m)!0]Z
k
0 [(pM+`�m)!0]

o
: (9.130)

With the introduction of the coupling impedance,

Z`m(!) = Ze�

�
`!0 + !

�� Ze�

�
(`�m)!0

�
Ze�(!) =

1

!rf

1X
p=�1

�
pM!0 + !

�
Z
k
0

�
pM!0 + !

�
;

(9.131)
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the equation of motion for the bunches can be written in the simpli�ed form,

�&` + 2dr _&
` + !2

s&
` = � ie�!rf

�2E0T0

M�1X
m=0

Il�mZ`m(
)&
m : (9.132)

The next simpli�cation is to exclude all solutions when 
 � �!s and include only

those near +!s. From the ansatz (9.123) or (9.125), one has

�&` + 2dr _&
` + !2

s&
` � �2i!s

�
_&` � (dr � i!s)&

`
�
; (9.133)

provided that dr � !s and j
� !sj � !s. We �nally obtain

_&` � (dr � i!s)&
` =

M�1X
m=0

A`m&
m ; (9.134)

with

A`m =
e�!rf

2�2E0T0!s
I`�mZ`m(!s) : (9.135)

This is just a M -dimensional eigenvalue problem. In the situation of an evenly �lled

ring, all bunch current ik are the same and the harmonic spectrum amplitude

Ip =

�
I0 =

P
k ik p = 0

0 p 6= 0 ;
(9.136)

where I0 is the total average current in the ring. This implies no coupling between the

EFEMs, as expected, and the eigenvalues are

�` = A`` =
e�!rf

2�2E0T0!s
I0 [Ze�(`!0 + !s)� Ze�(0)] ; ` = 1; � � � ; M�1 : (9.137)

Some results are apparent:

� The sum of eigenvalues,
P
A``, is independent of �ll shapes.

� Uneven-�ll eigenvalues vary linearly as I0.

� Radiation damping merely shifts all eigenvalues by dr, regardless of �ll shape.

� If all �lled buckets have the same charge qk, then broadband bunch-by-bunch

feedback also damps all uneven-�ll modes equally, since it behaves like radiation

damping.

� The EFEM basis yields a sparse A-matrix because usually coupled-bunch instabil-

ities are driven by only a few parasitic higher-order resonances in the rf cavities.
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9.3.4.1 Modulation Coupling

Let us study some special casex when IkZe�(k!0) = 0 except for k = 0. This implies

that the modulation coupling terms are the only manifestation of �ll unevenness. The

problem simpli�es considerably. In addition, if there is only one sharp resonance exciting

instability for mode ` in the EFEM basis, this resonance will initiate damping for mode

m. We try to couple these two modes by �lling the ring unevenly so that I`�m is

maximized. The A-matrix is now diagonal except for the coupling between these two

modes. The coupling A-matrix reduces to a two-by-two matrix. The new eigenvalues

for these two modes are

� =
1

2
(�` + �m)� 1

2

q
(�` � �m)2 + 4C2

`�m�`�m ; (9.138)

where Cp = jIpj=I0 is called the modulation parameter and its value cannot exceed unity.

If C`�m = 0, the even-�ll eigenvalues �` and �m are not perturbed. As C`�m approaches

unity, one eigenvalue approaches zero and so is its growth rate. The other eigenvalue

approaches �` + �m so that the damping rate of mode m is helping the growth rate of

mode `.

To optimize the modulation parameter Cp, we resort to the de�nition of the har-

monic amplitude Ip in Eq. (9.128). As an example, take a ring of M = 900 even-�ll

bunches and we wish to optimize Cp with p = 3. According to the de�nition of the

harmonic amplitude Ip in Eq. (9.128), the easiest way to accomplish this is to �ll the

ring every M=p = 900=3 = 300-th bucket (assuming that the total number of bucket is

also M = 900). Since we wish to keep the same current I0 in the ring, each of these

p = 3 chosen buckets will be �lled with bunch current I0=p = I0=3 and the modula-

tion parameter becomes C3 = 1. However, with so much charge concentrated at these

3 buckets, each bunch can become unstable by itself. To cope with this single-bunch

instability, we can �ll several adjacent buckets around each of these 3 chosen locations.

If the maximum allowable bunch current is imax, we need to �ll up I0=(pimax) adjacent

buckets. If I0 = 450 mA and imax = 2 mA, we need to �ll up 75 adjacent buckets at

xConsider a ring with M = 84 buckets. If there is a sharp resonance at !r = (pM + `)!0 with

` = 79, coupled-bunch mode ` = 79 in the EFEM basis will be excited, but mode m =M � ` = 5 will

be damped. To couple these two modes, we need to maximize Ik or I�k with k = `�m = 74. Under

this situation, IkZe�(k!0) = 0 except for k = 0, because (1) although I74 6= 0, there is no impedance

at (pM � 74)!0, and (2) although Ze�(k!0) 6= 0 for k = ` and k = m, I` and Im are zero because we

maximize I`�m only. The same is true if there are a few sharp resonances. This condition, however,

excludes the extra Landau damping to be studied in the Sec. 9.3.4.2.
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Figure 9.17: (color) Illustration of �ll optimization for a ring withM = 900 bunches

when evenly �lled and total beam current I0 = 450 mA. Solid: 50% �ll and 25% �ll

maximize C3 for imax = 1 mA and 2 mA. Dash-dot: Reference sinusoid at 3 times

revolution frequency.

each of the 3 locations. So all in total x = I0=(Mimax) or 25% of the buckets are �lled.

If imax = 1 mA instead, 150 adjacent buckets have to be �lled in each of the 3 chosen

locations, which makes 50% of the ring �lled. These patterns are illustrated in Fig. 9.17.

When a fraction x of the ring �lled in this way, the modulation parameter Cp will be

reduced. In general, we can calculate a corresponding \weight" cos(2�pn=M) for each

bucket n and �ll each of the \heaviest" I0=imax buckets to the same current imax. The

modulation parameter will be

Cp � sin(�x)

�x
: (9.139)

9.3.4.2 Landau Damping

We need to be a little careful to derive the tune shift for the bunches because, for

example, Eq. (9.132) is the equation of motion for a coupled-bunch mode ` and not for

a particular bunch. We need to use Eq. (9.121) to transform back to the equation of

motion of �k for bunch k. The frequency shift for bunch k relative to the mean tune is

found to be

�!k
s = � ie�!rf

�2E0T0!s

M�1X
`=0

�
Ze�(`!0)I`e

�i2�k`=M
�
; (9.140)

which is purely real because the real part of the summand is an odd function of ` with

period M . For an evenly �ll pattern, I` = 0 unless ` = 0. the tune shift for each bunch

will be the same. For I` 6= 0 when ` 6= 0, however, di�erent bunches receive di�erent

tune shifts, creating a tune spread for Landau damping.
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Consider a sharp impedance resonance at n!0 which is not a multiple of the bunch

frequency M!0. If we design a �ll optimized for Cn, we excite a sinusoidal ringing in

the wake voltage at n!0, which contributes to an uneven frequency shift to Eq. (9.140).

The larger the modulation parameter the larger will be the tune spread. Figure 9.18

shows the increase in Landau damping as the �ll fraction x is decreased. In the �gure,

Re � is proportional to the growth rate while Im� is proportional to the tune shift.

Interestingly, eigenvalues with large imaginary parts are completely damped even by

80% �lls.
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Figure 9.18: (color) Graphic look-up table for �ll-induced damping of eigenvalue

of unstable longitudinal EFEM n as Cn is increased from 0 (100% of ring �lled) to

0.5 (61% �lled). Dashes: Evolution of �n from a few even-�ll starting points.

9.3.4.3 APPLICATION

There are longitudinal coupled-bunch instabilities in the PEP-II Low Energy Ring (LER)

at I0 = 1 A and M = 873 [14]. The two largest cavity resonances are expected to drive

bands of modes centered at 93.1 MHz (EFEM 683) and 105 MHz (EFEM 770) unstable.

They also stabilize the corresponding bands at 25.9 MHz (EFEM 190) and 14 MHz

(EFEM 103). The growth and damping rate spectrum are shown in Fig. 9.19(a). The

best modulation-coupling cure is to couple the modes around 105 MHz to those near

25.9 MHz by maximizing C580 or C293 (Cp = CM�p). This will automatically couples
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Figure 9.19: (color) Illustration of �ll optimization for a ring with M = 1000

bunches when evenly �lled and total beam current I0 = 500 mA. Solid: 50% �ll and

25% �ll maximize C4 for imax = 1 mA and 2 mA. Dash-dot: Reference sinusoid at

4 times revolution frequency.

93.1 MHz to 14 MHz. The optimization can be easily accomplished by �lling every third

nominally-spaced bucket, since 873=3 = 291 is close to 293. This is equivalent to slicing

the frequency range from zero to M!0 and placing the three parts of the growth or

damping spectrum on each other. Thus the damping parts will help the growing parts.

The calculation illustrated in Fig. 9.19(b) shows that such a �ll should be stable at 1 A.

Modulation coupling was expected to raise the instability threshold from 305 mA

(nominal spacing) to 1.16 A (3 times nominal spacing). The measured thresholds are

350 mA and 660 mA, respectively.

Theoretical predictions of �ll-induced Landau damping were �rst tested at the Ad-

vanced Light Source (ALS). Only two of the 328 ALS modes were unstable: mode 204

and 233. The e�ective impedance at 233!0 was used to create a tune spread by maxi-

mizing C233.

A baseline even-�ll instability measurement was �rst made at I0 = 172 mA. This

gave the two eigenvalues �204 = (0:47� 0:02) + i(0:05� 0:03) ms�1 and �233 = (0:61�
0:02) + i(1:16� 0:03) ms�1, assuming that the radiation damping rate dr = 0:074 ms�1.

It is evident from Fig. 9.18 that �ll fraction less than 60% will damp the target mode

almost completely. Thus, any residual instability in the Landau �ll must correspond to
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the Landau-damped mode 204. Numerical calculation gives us only one unstable mode

with eigenvalue (0:1� 0:04)� i(1:62� 0:06) ms�1, whose real part is about 6 times less

than in the even-�ll case. The measured eigenvalue for a 175-mA beam with C233 = 0:67

is (0:09� 0:003)� i(1:63� 0:005) ms�1, in agreement with the theoretical prediction.

Prediction of uneven �ll has also been made on the light source at SRRC of Tai-

wan [15]. The main source of longitudinal impedance is from the Doris type rf cavities,

which have a resonance at 744.1948 MHz, loaded QL = 2219 and RL=QL = 31:95 
. But

from the observation on the real machine, the unstable mode number is 97 or resonance

frequency is 742 MHz. There are M = 200 rf bucket in the SRRC ring. Thus, the most

stable mode is 103. To couple the two modes, one must maximize C6, or the �lling pat-

tern is in 6 groups of buckets. The simulations consist of using three uneven �ll patterns

as illustrated on the left side of Fig. 9.20 with a total beam current of 200 mA.
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Figure 9.20: Fill patterns used in the simulation of the Taiwan Light Source.
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Figure 9.21: (color) The evolution of EFEM 97 and EFEM 103 of four �ll patterns

from simulation.

Table 9.1: Simulation results of growth rates of EFEM 97 and 103

of four �ll patterns. 5 ms radiation damping time has been included.

Growth rate ms�1

Fill pattern C6 EFEM 97 EFEM 103

uniform 0 1.9399 |

uneven1 0.8302 1.0004 1.0182

uneven2 0.9476 0.4947 0.4947

uneven3 0.8855 0.8659 0.8703

The spectra are shown on the right side. The growth rates for the two modes are

displayed in Fig. 9.21 and listed in Table 9.1. Note that the derived growth rates in-

clude 5 ms radiation damping time. We see that the uneven �lls do help to damp the

beam instability, although the result has not been completely satisfactory because the

instability still grows.
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9.4 Exercises

9.1. Above/below transition, with the angular resonant frequency !r o�set by �! =

�(!r�h!0) where !rf = h!0 is the angular rf frequency, h is the rf harmonic, and

!0 is the revolution angular velocity, the bunch su�ers Robinson's instability.

(1) Assuming that !s � j�!j � !rf and using the expression for resonant im-

pedance in Eq. (1.40), show that the Robinson's growth rate in Eq. (9.41) can be

written as
1

�
= �2e2N�RsQ

�2E0T 2
0

cos2  sin 2 ; (9.141)

where N is the number of particles in the bunch, E0 is the synchronous energy,

�c is the velocity of the synchronous particle with c being the velocity of light,

T0 = 2�=!0 is the revolution period, � is the slip factor, and the detuning angle  

is de�ned as

tan = 2Q
!r � !rf
!r

for the resonant impedance with shunt impedance Rs, resonant frequency !r=(2�),

and quality factor Q.

(2) Assuming further that j�!j is much less than the resonator width !r=(2Q)

which, in turn, is much less than !0, show that the Robinson's growth rate can be

written as
1

�
= �4e2NRsQ

2��!

��2E0hT0
: (9.142)

(3) Robinson instability is usually more pronounced in electron than proton ma-

chines because high shunt impedance and quality factor are often required in the rf

system. Take for example a ring of circumference 180 m with slip factor j�j = 0:03.

To store a typical bunch with 1 � 1011 electrons at E0 = 1 GeV, one may need

an rf system with h = 240, Rs = 1:0 M
, and Q = 2000. On the other hand, to

store a bunch of 1� 1011 protons at kinetic energy E0 = 1 GeV in the same ring,

one may need an rf system with h = 4, Rs = 0:12 M
, and Q = 45. Compare the

Robinson's growth rates for the two situations when the resonant frequencies are

o�set in the wrong directions by j�!j = !s. Assume the synchrotron tune to be

0.01 in both cases.

9.2. From Eq. (3.50), derive the potential-well contribution to the coherent synchrotron

tune shift of a short bunch in the dipole mode. Show that this static contribution

just cancels the dynamical contribution in Eq. (9.35) when the driving impedance

is broadband.
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9.3. Using the de�nition of the form factor in Eq. (9.68), compute numerically the form

factor when the unperturbed distribution is bi-Gaussian. The half bunch length

can be taken as �̂ =
p
6�� , where �� is the rms bunch length.

9.4. Consider a single sinusoidal rf system operating at synchronous angle �s = 0.

(1) Show that the synchrotron frequency of a particle at rf phase � is given by

fs(�)

fs0
=

�

2K(t)
; (9.143)

where t = sin�=2, fs0 is the synchrotron frequency at zero amplitude, and K(t) is

the complete elliptic integral of the �rst kind de�ned in Eq. (9.80).

(2) Show that Eq. (9.143) is consistent with Eq. (9.51) at small amplitudes.

9.5. Solve the set of equations in Eqs. (9.75) to (9.77) to obtain the fundamental rf

phase �s, the higher-harmonic rf phase �m and the voltage ratio r in terms of the

harmonic ratio m and Us=eVrf.

Answer:

sin�s=
m2

m2�1
Us

eVrf
; tan�m=

m

m2�1
Us

eVrfs
1�
�

m2

m2�1
Us

eVrf

�2
; r=

s
1

m2
� 1

m2�1
U2
s

(eVrf)
2 :

9.6. Derive the small-amplitude synchrotron frequency as given by Eq. (9.79).
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